5,603,034

1

GRAPHICAL RESOURCE EDITOR FOR
SOFTWARE CUSTOMIZATION

This application is a continuation of application Ser. No.
07/941,579, filed Sep. 8, 1992, now abandoned.

BACKGROUND OF THE INVENTION

The present invention relates generally to the customiza-
tion of graphically-controlled software in a data processing
system. More particularly, the invention pertains to an
editing system for selectively modifying resources used by
software applications to provide graphical user interface
objects.

A graphical user interface is a window-based system for
interfacing with a programmed computer by means of
graphical display windows. Such systems are ideally suited
and conventionally adapted for menu-driven operation. That
is, they allow a user to control computer operation by
selecting from one or more menus exhibited in the graphical
display windows without entering statements in alphanu-
meric form via a keyboard. A graphical display window is an
area of the computer’s physical display screen containing a
collection of interface objects through which software appli-
cations running on the computer receive inputs and present
their output. An interface object, such as a menu selection
item, is a graphics- and/or text-based image that signifies
information, function, and/or data entry. Such objects
include push buttons, scroll bars, dials, sliders and many
other graphical indicia. An interface object can be “selected”
by moving a mouse-controlled pointer or cursor to it and
operating (i.e., pressing or releasing) a button on the mouse.
This selection process includes what is referred to in the art
as “point-and-click”. The interface object is supported by
code that assists in providing appropriate response to the
user’s selection.

It is conventional for software applications to run in their
own graphical display windows, the appearance and char-
acteristics of which are defined by the application software.
Each application employs one or more top level windows
that define corresponding graphical display areas used by the
application. In so-called “multitasking” operating systems,
there may be several applications, each using one or more
windows, sharing the screen together. To minimize confu-
sion, these windows can be moved to different positions on
the screen, and may also be resizable. Moreover, the win-
dows are assigned a stacking order such that overlapping
windows do not compromise window appearance. Higher
order windows simply cover lower level windows in the area
of overlap. Thus, the effect is that of sheets of paper arranged
on a desktop.

One of the implications of a shared-screen, multitasking
window environment is that the graphical display windows
must provide a visually distinctive appearance that helps
users control the sometimes complex functionality presented
on the physical screen. Users may also have special require-
ments, apart from multitasking considerations, for ensuring
particularized window characteristics. In the art of graphical
user interfaces, the term “resources” refers to color, text
fonts, screen cursors and other graphical attributes users may
desire to control. Resource values are chosen by application
developers during program development and may not rep-
resent an ideal choice when the application is implemented
on a user’s data processing system. Accordingly, it would be
desirable to allow users to override or modify resource
selections made by application programmers so that users

20

30

35

40

45

50

55

60

65

2

are able to customize efficiently the look and feel of their
applications.

In some operating environments, user customization of
window resources is intended. The X Window System is an
industry-standard software system developed at Massachu-
setts Institute of Technology that provides a window envi-
ronment for developing device-independent graphical user
interfaces. In the X Window System, resources defining
attributes of graphical interface objects are set by program
developers in an application-specific file known as an “app-
defaults” file. The X Window System allows users to over-
ride resource settings in the app-defaults file with a user-
generated file known as an “Xdefaults” file. When an
application is invoked, the X Window System, in an initial-
izing step, creates an resource database and loads it with
resource specifications found in the application’s app-de-
fault file and the user’s .Xdefaults file. The resource database
is used by the application to build its windows and graphical
interface objects at run time.

In the X Window System, as in other graphical user
interface systems, graphical interface objects are defined
hierarchically. For applications based on the X toolkit intrin-
sics, each graphical interface object is constructed from one
or more components known as “widgets”. A widget is an
object oriented programming entity containing data and one
or more functions which operate on that data. When created
by an application, a widget is assigned its own screen
window. There are various standard widget sets available to
application developers for building graphical user interfaces.
Open Software Foundation, Inc. provides the Motif toolkit.
Widgets in the Motif toolkit include scroll bars, title bars,
menus, dialogue boxes and a host of other graphical inter-
face objects.

In app-defaults and . Xdefaults files, the resources used by
widgets are specified using hierarchical string identifiers that
uniquely determine the widgets (or widget classes) to which
they apply. These identifiers can include such information as
the name (or class) of an application containing the widgets.
Moreover, because widgets in an application’s graphical
display window are defined hierarchically, the resource
identifier can include a list of widgets (or widget classes)
arranged in the widget hierarchy. The syntax of these
identifiers must be observed or the resource may not be
correctly applied to the intended widgets (or widget classes).
As a result, manipulating an .Xdefaults file can be cumber-
some and time consuming.

In response to this dilemma, efforts have been made to
develop editors for the X Window System that allow users
to customize their applications. One such product is “Edi-
tres” from Massachusetts Institute of Technology. Editres is
an editing tool that allows users to view the full widget
hierarchy of any application that speaks the Editres protocol.
Editres assists the user in constructing resource specifica-
tions and allows the user to apply the resource to an
application and view the results dynamically. If the user is
satisfied with the resource modification, Editres appends the
modified resource string to a selected app-defaults file or to
the user’s .Xdefaults file.

Despite its beneficial features, Editres suffers from several
disadvantages. For example, some applications require
source code modifications or recompilation in order to work
with Editres. In the dynamic editing mode, Editres fails if it
cannot communicate with the application. Editres also tends
to overcomplicate the editing process by presenting the user
with an entire widget tree containing every widget used by
an application. Often, the user is not interested in more than



